Skip to content

News Center | Georgia Institute of Technology Georgia Institute of Technology

Search

Search form

  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
  • News Home
  • Campus Map
  • Directory
  • Offices

News Center

Menu
Close
  • Calendar
  • Categories
    • Business and Economic Development
    • Campus and Community
    • Earth and Environment
    • Health and Medicine
    • Science and Technology
    • Society and Culture
    • Feature Stories
  • Media Contacts
  • Experts
    • Find an Expert
    • Featured Expert
  • Daily Digest
  • The Whistle
    • Home
    • Classifieds
    • Archives
  • Social Media
  • Subscribe
  • You are here:
  • GT Home
  • Georgia Tech NewsCenter
  • Home
  • Moving Iron in Antarctica

Moving Iron in Antarctica

New study on carbon dioxide absorption in Antarctic seas

June 12, 2013 • Atlanta, GA

Ellery Ingall and Julia Diaz
Click image to enlarge

Ellery Ingall and former Georgia Tech graduate student Julia Diaz studied the cycling of iron off the coast of Antarctica.

Download Image
MORE PHOTOS

The seas around Antarctica can, at times, resemble a garden. Large-scale experiments where scientists spray iron into the waters, literally fertilizing phytoplankton, have created huge man-made algal blooms. Such geoengineering experiments produce diatoms, which pull carbon dioxide out of the air. Experts argue that this practice can help offset Earth’s rising carbon dioxide levels. However, the experiments are controversial and, according to a new study at the Georgia Institute of Technology, perhaps not as effective as expected.

Georgia Tech research published online Monday in Nature Communications indicates that diatoms stuff more iron into their silica shells than they actually need. As a result, there’s not enough iron to go around, and the added iron may stimulate less productivity than expected. The study also says that the removal of iron through incorporation into diatom silica may be a profound factor controlling the Southern Ocean’s bioavailable pool of iron, adversely affecting the ecosystem. 

“Just like someone walking through a buffet line who takes the last two pieces of cake, even though they know they’ll only eat one, they’re hogging the food,” said Ellery Ingall, a professor in Georgia Tech’s College of Sciences. “Everyone else in line gets nothing; the person’s decision affects these other people.”

Ingall says, similarly, these “hogging” diatoms negatively affect the number of carbon-trapping plankton produced. They also outcompete other organisms for the iron.

“It appears the diatoms aren’t using all of the iron for photosynthesis,” he said. “They’re incorporating iron in their shells for another purpose, keeping it from others and affecting the plankton ecosystem.”

Researchers have known for years that diatoms can remove iron from oceans and carbon from the atmosphere, but little is known about how iron is cycled and removed from the Antarctic region.

Ingall and a former Georgia Tech graduate student, Julia Diaz, spent nearly six weeks in Antarctica’s Ross Sea from 2008 to 2009, trying to learn more. They collected samples in the frigid waters and used them to create what is believed to be the first spectroscopic, compositional characterization of iron in marine biogenic silica. Ingall conducted an X-ray analysis of the phytoplankton at the U.S. Department of Energy’s Argonne National Laboratory.

A major source of bioavailable iron in Antarctica is from melting snow and dust deposition. Ingall found that iron addition via these sources barely keeps pace with subtraction by diatoms.

“Uptake of iron by diatoms is significant compared to what Mother Nature is able to naturally add to the ocean,” he said. “This uptake could shift microbial communities toward organisms with relatively lower iron requirements.”

According to Ingall, removal of iron by diatom-dominated phytoplankton communities may dampen the intended outcome of enhanced carbon uptake through iron fertilization by reducing the productivity of other phytoplankton, which take up carbon dioxide more efficiently.

This research was funded by the National Science Foundation (EDI-0849494, PLY-0836144, and EDI-1060884). The findings and conclusions are those of the authors and do not necessarily represent the official views of the NSF.

Additional Photos

  • Diatoms in Antarctica
     

    Diatoms in Antarctica

    Professor Ellery Ingall studied diatoms and their role in cycling iron in Antarctica. Colonies of diatoms living in the ice typically produce brown layers. Ingall collected samples while onboard the Swedish ship Oden (pictured).

     

    Download Image
  • Ellery Ingall
     

    Ellery Ingall

    Download Image
  • Diatoms
     

    Diatoms

    Left: a map of silicon distribution in a diatom. Right: a map of the distribution of iron in the same diatom. Lighter colors indicate higher concentrations. Note how the distribution of iron mirrors the distribution of silicon.

     

    Download Image

Related Links

  • College of Sciences
  • Ellery Ingall
  • Published Article

Contact Information

Jason Maderer
Media Relations
maderer@gatech.edu
404-385-2966

 

Categories

News Categories

  • Business and Economic Development
  • Campus and Community
  • Earth and Environment
  • Health and Medicine
  • Science and Technology
  • Society and Culture

Featured Videos

Seth Osekre, a custodian in Facilities Management, follows safety protocols when cleaning. (Video by Allison Carter)

2020 graduate TJ Weiler talks about his journey to earning a Georgia Tech degree.

Georgia Tech Resources

  • Offices & Departments
  • News Center
  • Campus Calendar
  • Special Events
  • GreenBuzz
  • Institute Communications
  • Visitor Resources
  • Campus Visits
  • Directions to Campus
  • Visitor Parking Information
  • GTvisitor Wireless Network Information
  • Georgia Tech Global Learning Center
  • Georgia Tech Hotel & Conference Center
  • Barnes & Noble at Georgia Tech
  • Ferst Center for the Arts
  • Robert C. Williams Paper Museum

Colleges, Instructional Sites & Research

  • Colleges
  • College of Computing
  • College of Design
  • College of Engineering
  • College of Sciences
  • Ivan Allen College of Liberal Arts
  • Scheller College of Business
  • Instructional Sites
  • Georgia Tech-Lorraine
  • Georgia Tech-Savannah
  • Georgia Tech-Shenzhen
  • Georgia Tech Online
  • Professional Education
  • The Language Institute
  • Global Footprint
  • Global Engagement
  • Research
  • Georgia Tech Research Institute
  • Research at Georgia Tech
  • Executive Vice President for Research

Student & Parent Resources

  • Student Resources
  • Apply
  • BuzzPort
  • Buzzcard
  • Career Center
  • Co-ops & Internships
  • Commencement
  • Library
  • Student Life
  • Student Entrepreneurship
  • Study Abroad
  • T-Square
  • Parent Resources
  • Parent and Family Programs
  • Dean of Students
  • Scholarships & Financial Aid

Employee, Alumni, & Other Resources

  • Employees
  • Administration and Finance
  • Advising & Teaching
  • Faculty Affairs
  • Faculty Hiring
  • Human Resources
  • Office of the Provost
  • TechWorks
  • Alumni
  • Alumni Association
  • Alumni Career Services
  • Giving Back to Tech
  • Outreach
  • Startup Companies
  • Economic Development
  • Industry Engagement
  • Government & Community Partners
  • Professional Education
Map of News Center | Georgia Institute of Technology

Georgia Institute of Technology
North Avenue, Atlanta, GA 30332
Phone: (404) 894-2000

  • Contact Us
  • Site Feedback
  • Tech Lingo
  • Emergency Information
  • Legal & Privacy Information
  • Human Trafficking Notice
  • Accessibility
  • Accountability
  • Accreditation
  • Employment
Georgia Tech

© Georgia Institute of Technology